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Abstract. We study the properties of the spatial fluctuations in the far-field parametric fluorescence output
of a type 1 degenerate traveling-wave parametric amplifier. Results of a semi-classical simulation are
compared with experiments in a LBO crystal. This simulation is then used to predict amplified images of
a continuous background, in a phase-sensitive as well as in a phase-insensitive configuration.

PACS. 42.50.-p Quantum optics – 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps
– 42.65.Yj Optical parametric oscillators and amplifiers

1 Introduction

Reducing quantum fluctuations of light in imaging sys-
tems has recently attracted a considerable interest. Many
phenomena that are now well-known in the time-domain
have been shown to have their counterpart in the spatial
domain, like noiseless image amplification [1–3], image en-
tanglement [4,5] or generation of multimode squeezing [6].
However, the reduction of quantum fluctuations is often
shown, even in these studies, still in the time domain. For
example, the experiment in the group of Kumar [1] shows
that a phase-sensitive scheme allows the signal-to-noise-
ratio to be unmodified by the parametric amplification
over an entire image, where the noise is recorded at a fre-
quency of 27 MHz by a photodiode with a detection area
smaller than the resolution cell. Because the photodiode
scans the image, this result proves that phase-sensitive
amplification improves the regularity in time of the dis-
tribution of photons for each point of the image but does
not directly show a regularity in space because only fluc-
tuations in the time-domain at a specific frequency are
recorded. However, fluctuations in quantum mechanics are
described by ensemble averages, that are often estimated
by time averages if the signal is stationary in time, but
which can be also estimated by spatial averages if the
signal is stationary in space on a sufficiently large area.
This point of view has been developed in theoretical stud-
ies either by computing the spatial frequency spectrum
of quantum fluctuations [6] or by studying spatial corre-
lations [7]. However, purely spatial quantum fluctuations
have not yet been experimentally evidenced. These spa-
tial fluctuations will limit the ultimate precision in spa-
tial measurements, like for example measurements of dis-
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placements [8]. In our recent work on spontaneous down-
conversion in a LBO crystal [9], we showed that spatial
fluctuations in the far-field image exhibited strong corre-
lations between symmetrical areas. However, the experi-
mental set-up did not allow us to conclude on their quan-
tum character. This paper presents numerical simulations
of spatial fluctuations resulting from the amplification of
quantum noise, at the same semi-classical level. In par-
ticular the paper does not aim at demonstrating purely
quantum effects, like e.g. sub-Poissonnian statistics of dif-
ferences [4]. It is organized as follows. We briefly review
in Section 2 the experimental results reported in [9], com-
pare them in Section 3 to a numerical semi-classical model
and in Section 4 we simulate with this model the detected
images resulting from the amplification of a continuous
background.

2 Experiment

The experimental set-up is illustrated in Figure 1. The
pump pulses of 40 ps duration, with a time-bandwidth
product close to 1, are generated by a frequency-doubled
Q-switched mode-locked Nd:YAG laser at a repetition
rate of 10 Hz and at a wavelength of 532 nm. The beam
has an elliptical transverse section with ∆x = 0.44 mm,
∆y = 0.12 mm and is vertically polarized in the XY -
plane of a 15 mm long LBO crystal whose lateral dimen-
sions are 4×4 mm2. A beam splitter BS before the crystal
permits the measurement of the pump pulse energy with
an energymeter. The transmitted part of the collimated
pump beam illuminates the input face of the crystal and
a dichroic mirror separates it from the fluorescence sig-
nal after the crystal. The spatial frequency spectrum of
the parametric fluorescence is imaged in the image focal
plane of the lens L (Fourier plane) by a single-shot CCD
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Fig. 1. Experimental set-up used to study the spatial properties of parametric fluorescence.

Experiment Simulation

Fig. 2. Sequence of three spatial frequency spectra obtained
with the same phase matching conditions and approximately
the same pump energy. Each spectrum corresponds to one laser
shot.The spectra in (a) are experimental, while those in (b) are
obtained by numerical simulation.

camera. A RG5 filter F1 and a narrow band (∆λ = 5 nm)
interference filter F2, centered around the degenerate fre-
quency (λ = 1064 nm), are placed in front of the CCD
camera in order to limit the number of detected tempo-
ral modes around degeneracy. The CCD camera and the
energymeter are monitored by a computer synchronized
with the laser. Hence, the far field distribution of the flu-
orescence signal is measured shot to shot with respect to
the pump pulse energy.

Figure 2a represents a sequence of three far-field im-
ages obtained for the same phase matching conditions,

corresponding to the amplification of a ring, and with
approximately the same pump pulse energy. The spatial
fluctuations vary from one shot to another. However, spa-
tial correlation between pairs of spatial modes that are
symmetrically distributed around the pump beam direc-
tion is clearly exhibited [10]. Figure 3a shows the exper-
imental autocorrelation functions along a circular profile
corresponding to perfect phase matching at degeneracy.
This circular profile is experimentally determined as that
where the detected mean intensity is maximum. The most
prominent feature of these functions is the almost perfect
correlation for an angle of 180◦. It means that fluctua-
tions of areas that are opposite to each other with respect
to the pump direction are strongly correlated, because of
the twin-photon emission at degeneracy. Though strong,
the correlation is not perfect because of the classical noise.
Furthermore, the autocorrelation function is computed in
the classical signal processing way, that ensures a maxi-
mum of the autocorrelation at 0◦. This function cannot
be directly compared with the quantum correlation, that
measures the joint probability of the detection of a pair
of photons at two points. It has been proved in [7] that
this quantum correlation is higher at 180◦ than at 0◦.
A direct experimental measurement of the quantum cor-
relation function would require a single photon sensitivity
that was not available in the described experiment. We
compare in the next section the size and the contrast of
the fluctuations obtained in this experiment with a semi-
classical simulation.

3 Numerical simulation

The semi-classical model of spontaneous down-conversion
assumes an input quantum noise of one photon per spatio-
temporal mode. Figure 2b shows images of far-field para-
metric fluorescence obtained by a computation using the
following procedure:

– at the input of the crystal, the field is simulated by
a white noise, with a random phase and a Gaussian
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Fig. 3. (a) Autocorrelation functions of the 1-D intensity pro-
files obtained on the best phase matching circles (correspond-
ing to the maximum detected intensity) for the spectra of Fig-
ure 2a. The continuous background has been removed. (b) Solid
lines: five autocorrelation functions obtained from simulated
spectra; dotted line: mean of ten autocorrelation functions.

distributed amplitude that corresponds to a mean en-
ergy for each sample equal to that of one photon. The
only constraint for the sampling frequency is to be
greater than twice the spatial frequency that corre-
sponds to the external radius of the phase matching
ring;

– the pump field, supposed undepleted by the fluores-
cence, is determined from its experimental image at
the output face of the crystal (near-field) and from
measurements of its total energy and duration. This
field is used as the phase reference;

– the signal field is propagated in Fourier space, tak-
ing into account the pump-signal phase mismatch for
colinear propagation, and coherently amplified in the
direct space by using the classical coupled equations of
parametric amplification. Note that, because of com-
plete degeneracy, these equations link the pump, the
signal and the complex conjugate of the signal. The

idler and the signal waves are completely indistinguish-
able;

– the simulation is repeated for each temporal mode,
whose duration (0.8 ps) is proportional to the recipro-
cal of the interference filter bandwidth. This duration
corresponds to a time interval in the pump Gaussian
pulse where the pump amplitude can be considered
as constant. To simulate the integration by the CCD
camera, the far-field images of all temporal modes are
incoherently added.

A direct quantitative comparison between the experi-
mental and the simulated images is not possible, because
of the random character of these images. However, the
qualitative similarity is evident. In particular, the mean
size of the fluctuations is similar and can be estimated as
the reciprocal area in the spatial frequency domain of the
fluorescence beam at the output of the crystal [9]. Note
that the section of the fluorescence beam is much smaller
than that of the pump beam, because of the high gain
(about 60 dB) and of the Gaussian spatial profile of the
pump beam. On the other hand, the contrast in the simu-
lated images is somewhat higher than in the experimental
ones. The explanation could reside in either the experi-
mental conditions (a slight defocusing could be invoked)
or an under-estimation of the number of temporal modes.
The contrast in the simulated images for a single temporal
mode is unity, in good agreement with theory [3,4].

The last important point is the perfect correlation be-
tween opposite pixels in the simulated images. Because of
the classical nature of the simulation, where fields rather
than photons are propagated, this correlation is classi-
cal and the sub-Poissonnian statistics on the difference
between opposite pixels [4,7] cannot be evidenced. Fig-
ure 3b shows five autocorrelation functions on the cir-
cle of best phase matching of the simulated images. One
of these functions exhibits two secondary peaks at 90◦,
like two experimental autocorrelation functions. However,
these peaks are not present in all images, experimental as
well as simulated, and their random existence can be at-
tributed to the great size of the fluctuations. To confirm
that point, the mean of ten autocorrelation functions, also
shown in Figure 3b, exhibits only peaks at 0◦ and 180◦,
as expected.

4 Simulation of the amplification
of a continuous background

When the signal and the idler channels are both excited in
type 1 or type 2 amplification, the amplification gain de-
pends on the input relative phase of the interacting waves.
Such a phase sensitive amplifier (PSA) can be used to am-
plify beams limited by the shot noise without degrading
the signal-to-noise ratio, while a phase-insensitive ampli-
fier (PIA) adds 3 dB of noise [11,12]. A PSA can also
be used to noiselessly amplify an image [1–3]. We use in
the following the numerical simulation described above to
obtain near-field images of the amplification of a contin-
uous background, with a unity quantum efficiency of the
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Fig. 4. PIA: coherent signal with Gaussian noise on the signal
channel and 1/2 photon of noise/pixel on the idler channel.
PSA: projection of the classical field onto the two channels
+1/2 photon of noise/pixel.

detector. These near-field images correspond to our ex-
perimental scheme of parametric image amplification [13],
also used in reference [1], where the object is imaged in the
crystal and then on a CCD Camera. On the other hand,
the theory developed in references [3,4] considers a crystal
in the Fourier plane of the imaging system.

The input image, a plane wave with a mean intensity
constant in the transverse plane, is amplified at degener-
acy by a type 2 parametric interaction in a 2 cm long KTP
crystal with a 7× 7 mm2 section. The shot noise is simu-
lated by adding to the classical field a random field with
a Gaussian distribution corresponding to a mean ampli-
tude of 1/2 photon per pixel in the input image for both
polarisations [11]. As shown in Figure 4, PIA occurs when
a coherent signal is amplified on one polarisation, while
the idler channel, corresponding to the other polarisation,
is excited by half a photon of noise per pixel. PSA is ob-
tained when the classical field is polarised at 45 degrees
with respect to the signal and idler axes. After projection
of this classical field onto these axes, the random field is
independently added on each axis.

Figure 5 shows results of the numerical simulation.
The input image has 256 × 256 pixels, a mean number
of 50 photons/pixel and the maximum parametric gain in
a PSA configuration is 17 dB. In order to directly evaluate
the regularity in space of the intensity, the signal-to-noise
ratio is estimated by a statistical average on the pixels of
a single image by [12]:

SNR =
〈N〉2

〈N − 〈N〉〉2
· (1)

In (1), N is the number of photons on one pixel. Because
the simulation involves fields rather than photons, this
number is not necessarily an integer. Surprisingly, the
noise figure NF, defined as the ratio between the input
and the output signal-to-noise ratio, is smaller than
one, NF(PSA) = 0.14, that corresponds to an apparent

Fig. 5. Result of the numerical simulation for PSA: spatial
inhomogeneities are wider in the output image than in the
input image.

improvement of the signal-to-noise ratio. Actually, phase
matching acts as a low pass-filter that rejects the high fre-
quency noise, resulting in inhomogeneities in the amplified
image that have a greater spatial size than the spatial fluc-
tuations in the input image (see Fig. 5). As the SNR must
be defined in the bandwidth of the amplifier, the size of
the pixels must be greater than the size of the resolution
cell in the amplified image. From an other, but equiva-
lent, point of view [3], using too small pixels can be seen
as introducing detection losses that deteriorate the SNR
that would result of the detection of the input Poisson-
nian image, while the amplified image is less sensitive to
detection losses because of its super-Poissonnian statis-
tics. As expected, taking in account pixels greater than
the resolution cell results in a NF(PSA) close to 1 and
a NF(PIA) close to 2: Figure 6a shows that such pixels
are obtained by binning at least 8 × 8 CCD pixels, while
the size(FWHM) of the resolution cell is approximately
4×4 pixels. This size has been estimated on the amplified
image of a delta-like object, i.e. an object with a single
pixel where the intensity is non zero. However, the cal-
culated noise figure remains somewhat smaller than the
actual one, leading to results eventually slightly below the
unity in Figures 6b–6d, because binning does not corre-
spond to a perfect low-pass filter. Figure 6b shows the vari-
ation of the NF with respect to the input relative phase,
for sufficiently great pixels. The numerical simulation is
fitted with the curve of the theoretical NF(PSA) for one
degenerate mode at perfect phase-matching given by:

see equation (2) below
whereNin is the number of photons per mode at the input,
ϕ is the phase of the input signal with respect to the am-
plified quadrature and r is the gain factor. Equation (2) is
valid for an image because only low spatial frequencies are
involved in the amplification of a continuous background.
A more general expression for the noise figure, including
imperfect phase-matching, can be found in [3] and we have
experimentally shown [14] that amplification for higher
spatial frequencies is maximum for ϕ 6= 0. For a suffi-
ciently intense input signal (Nin = 50 photons), Figure 6b

NF(PSA) =
Nin

[
Nin

(
cos2(ϕ) exp(4r) + sin2(ϕ) exp(−4r)

)
+ 2cosh2(r)sinh2(r)

][
Nin

(
cos2(ϕ) exp(2r) + sin2(ϕ) exp(−2r)

)
+ sinh2(r)

]2 (2)
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Fig. 6. Variation of the noise figure versus: (a) the binning, (b) the input relative phase, (c) the gain and (d) the number of
photons per pixel at the input for a PSA (black curves) and a PIA (gray curves). In (b-d), the numerical simulations are fitted
with the theoretical curves given by equations (4) and (5).

shows that the NF(PIA) is close to 3 dB and does
not depend on the relative phase while the NF(PSA)
remains close to 0 dB for a relative phase correspond-
ing to maximum amplification. On the other hand,
parametric fluorescence becomes predominant when
the signal is deamplified and the noise figure attains
18 dB for maximum deamplification, in good agree-
ment with equation (2). Note however that the output
SNR becomes insignificant when fluorescence predom-
inates. Figure 6c shows the variation of the NF with
respect to the amplification gain. When the signal is
injected with the phase corresponding to the amplified
quadrature, NF(PSA) is equal to one whatever the gain
while NF(PIA) tends to 2 when the amplification gain
increases. Figure 6d shows the NF versus Nin. When

Nin decreases, NF{PSA} should become greater than 1
because the parametric fluorescence degrades the output
SNR. Actually, formula (2) is questionable when Nin be-
comes weak because a non negligible part of the mean in
the output intensity is created by the parametric fluores-
cence and does not carry a signal. Hence the formula (1)
must be replaced at the output by:

SNRout =
(〈N〉 − 〈Nfluo〉)2

〈N − 〈N〉〉2 (3)

leading for the noise figure to:

see equation (4) below

NF(PSA) =
Nin

[
Nin

(
cos2(ϕ) exp(4r) + sin2(ϕ) exp(−4r)

)
+ 2 cosh2(r) sinh2(r)

][
Nin

(
cos2(ϕ) exp(2r) + sin2(ϕ) exp(−2r)

)]2 (4)
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NF(PIA) =
Nin

�
Nin cosh2(r)

�
cosh2(r) + sinh2(r)

�
+ 2 cosh2(r) sinh2(r)

�

�
Nincosh2(r)

�2 · (5)

an equivalent expression can be derived in the phase-
insensitive case:

see equation (5) above.

Figure 6d shows the numerical noise figures versus the
number of photons, calculated with subtraction of the
mean parametric fluorescence, and the theoretical curves
resulting from the expressions (4) and (5). The agreement
is correct except for a very low number of photons. In this
case, the theoretical SNR becomes much smaller than 1 at
the output, while such a very low SNR cannot be correctly
estimated from the output simulated images (because the
estimated signal level has no more signification).

5 Conclusion

In this paper, we have simulated the spatial fluctuations
of parametric fluorescence and of the amplified image of
a continuous background. The statistical analysis of these
images has allowed us to define criteria that we plan to use
in the next future to experimentally demonstrate noiseless
image amplification, where the quantum noise is measured
through purely spatial fluctuations. The simulation can be
extended to other types of images, in order to assess the
effect of the quantum noise on resolution. In its present
form, the simulation is valid only for relatively high para-
metric gains, where the input quantum noise injected in
a classical way has a negligible energy with respect to the
output energy.
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